Для сдачи тестов, рубежного контроля, а также закрепления материала используйте браузеры MS Internet Explorer, Mozilla Firefox, Chromium
    Главная страница электронного учебника
    Содержание дисциплины

    Определение групп отложений горных пород
    Содержание дисциплины

    Геологические складки, виды складок

    Учебная тема
    Дуплистость

    Тема 2.3 Дуплистость

    Бентосные организмы являются хорошими показателями среды обитания. Они живут на морском дне в виде сообществ — биоценозов, в которые входят различные организмы, тесно связанные друг с другом единым местом обитания на морском дне. На огромных пространствах морского дна обитает масса различных биоценозов, состав которых зависит от физико-географической обстановки и среды обитания. С изменением глубины, характера морского дна, солености морской воды, ее температуры и т. д. происходит изменение биоценозов. Таким образом, изучая состав биоценозов, можно установить не только место их обитания, но и физико-географические условия среды: глубину моря, соленость и температуру морской воды и т. д. По биоценозу прежде всего устанавливают биономическую зону: литораль, сублитораль, эпибатиаль, батиаль или абиссаль — зону обитания организмов на морском дне.

    В ископаемом состоянии — в горной породе — биоценозы не могут сохраниться в полном составе. Некоторые организмы не превратились в окаменелости, другие после смерти были вынесены течениями с места первоначального обитания. Поэтому в том или ином слое осадочной горной породы сохраняется только часть первоначального биоценоза в виде окаменелостей. Кроме того, в породе встречают ископаемые остатки, которые были привнесены морскими течениями из других участков морского дна, а также упавшие сверху из толщи морской воды различные пелагические организмы. Таким образом, в породе наблюдают очень разнородный комплекс окаменелостей, который не соответствует составу первоначального биоценоза. Задачей геолога, проводящего биономический анализ, является восстановление первоначального биоценоза. Это задача не легкая, в процессе ее решения геолог должен отбросить все органические остатки, чуждые данному участку, и оставить для изучения только окаменелости, входившие в первоначальный биоценоз. По восстановленному биоценозу определяют биономическую зону — место обитания биоценоза, а вместе с этим и физико-географические условия среды обитания. Все это требует очень тщательных наблюдений, к правильным выводам приводит совместное использование литологического и биономического анализов.

     

    1.4. Основы фациального анализа континентальных отложений

    Суша является преимущественно областью размыва, накопление осадков на суше происходит только в понижениях рельефа. Здесь осадки резко отличаются по составу и строению даже на коротких расстояниях, т. е. фациальная изменчивость выражена гораздо резче, чем в море. Кроме того, на суше осадки располагаются пятнами, а на морском дне накапливаются повсеместно и закономерно. Из-за быстрой фациальной изменчивости для суши нигде нельзя построить даже примитивную схему распределения осадков. Биономический анализ практически проводить невозможно, так как органические остатки встречаются очень редко. Поэтому для континентальных отложений проводится только литологический анализ.

    Все современные континентальные отложения представляют собой рыхлые осадочные накопления, среди которых выделяют несколько фаций, называемых генетическими типами: элювиальные, делювиальные, пролювиальные, аллювиальные, озерные, болотные, гравитационные, ледниковые, эоловые отложения.

    Изучая континентальные отложения, геологи выделяют указанные генетические типы. Среди современных континентальных отложений их установить нетрудно, а внутри ископаемых, превращенных в твердую горную породу, выделить их зачастую невозможно. В этих случаях геологи стараются выделять комплексы континентальных фаций и по ним устанавливать условия их образования (комплекс фаций аридного климата, гумидного климата, ледниковый комплекс, комплекс предгорий и т. д.). Большое значение имеют окаменелые растительные остатки, встречающиеся в континентальных отложениях. По составу растительности можно установить климатические особенности прошлых эпох.

     

    1.5. Палеогеографические карты

    На палеогеографических картах обобщают все данные, полученные при проведении фациального анализа, и изображают географию земной поверхности для определенного этапа геологического времени (периода, эпохи, века). Эти карты могут быть различных масштабов: мелкие — для всего земного шара и для отдельных континентов; крупные — для какого-либо участка земной поверхности. В зависимости от масштаба карты на ней показывают различные элементы древнего ландшафта. На крупномасштабных палеогеографических картах можно показать контуры суши и моря, рельеф суши и морского дна, распределение осадков в море и их мощности, контуры озер и древние речные долины, расположение вулканов, направление морских течений, границы климатических и биогеографических зон.

    В идеале палеогеографическая карта должна быть аналогом современных географических и литологических карт. Однако ни одна палеогеографическая карта не может отвечать этому идеалу. Во-первых, палеогеографические карты всегда имеют неточности и белые пятна со знаком вопроса, что является следствием неполноты геологических данных и несовершенством методов фациального анализа. Во-вторых, на палеогеографические карты нанесены материалы, обобщающие события за определенный отрезок геологического времени (сотни тысяч и миллионы лет), а географические карты составляют для современного момента времени, их регулярно обновляют и уточняют.

    Несмотря на отмеченные недостатки, палеогеографические карты имеют большое научное и практическое значение. Они оказывают огромную помощь при восстановлении геологической истории Земли и отдельных ее участков, позволяют судить о процессах и явлениях, имевших место на поверхности Земли в далеком прошлом, и об изменениях их во времени. Детальные палеогеографические карты являются также надежной основой для прогноза осадочных полезных ископаемых, всегда связанных с определенными фациями.

     

    1.6. Методы восстановления движений земной коры

    В течение длительной геологической истории земная кора испытывала тектонические движения, следы которых наблюдают повсеместно на поверхности Земли. Эти движения изменяли первоначальное горизонтальное залегание слоев, вызывали их наклон, складкообразование и дробление. Тектонические движения проявлялись в различных участках нашей планеты, в разное время, с неодинаковой силой. При восстановлении геологической истории необходимо выяснить характер этих движений и установить время их проявления.

    Тектонические движения очень разнообразны, среди них выделяют два основных типа: колебательные и дислокационные. Колебательные движения охватывают обширные территории материков и океанических впадин, они проявляются длительное время и приводят к перераспределению морских бассейнов и участков суши, не вызывая резких нарушений первоначального залегания слоев. Следствием этих движений являются морские трансгрессии и регрессии — наступления и отступания морей. Дислокационные движения нарушают структуру земной коры, вызывают образование разнообразных складок, сбросов, надвигов и других складчатых и разрывных нарушений. Оба типа движений сильно отличаются друг от друга, поэтому и методы их изучения различны. Для исторической геологии важно восстановить характер и время проявления колебательных движений. Дислокационные движения являются основным объектом изучения другой геологической науки — структурной геологии.

     

    1.7. Анализ геологических и палеогеографических карт

    Даже беглое изучение геологической карты позволяет установить места проявления колебательных и дислокационных движений. На участках длительных поднятий распространены древнейшие породы; там, где проявлялись движения отрицательного знака, наблюдаются молодые породы. Зоны проявления дислокационных движений характеризуются узкими линейными структурами и развитием разрывных нарушений. Колебательные движения хорошо восстанавливаются путем сравнения ряда последовательно составленных палеогеографических карт.

    Анализ мощностей слоев горных пород позволяет судить о величине и скорости прогибания отдельных участков земной коры: на участках ускоренного прогибания накапливаются осадки большей мощности; на участках замедленного прогибания — меньшей. Цифровые данные о мощностях наносят на палеогеографические карты; обычно их выражают в виде изопахит — линий равных мощностей. По изопахитам можно установить скорость прогибания того или иного участка морского дна или суши.

    Анализ перерывов и несогласий на геологических разрезах позволяет установить время, характер и площадь проявления поднятий земной коры. Поверхности перерывов и несогласий фиксируются в разрезе отсутствием тех или иных стратиграфических горизонтов. Интервал перерыва в осадконакоплении соответствует времени проявления поднятия.

    Анализ геологического разреза (стратиграфической колонки) является наиболее наглядным методом восстановления колебательных движений. При рассматривании стратиграфической колонки определенного участка обращают внимание на следующие признаки: на присутствие или отсутствие перерывов, на смену литологических типов отложений, на их мощности и на состав ископаемой фауны или флоры.

    Полученные данные о движении земной коры изображают в виде палеогеографической кривой — графика колебательных движений поверхности осадконакопления или размыва. Для этого по оси абсцисс откладывают время в произвольном масштабе. По оси ординат выше нулевой линии (уровня моря) показывают сушу, а ниже — биономические зоны моря (обычно литораль, сублитораль, эпибатиаль и батиаль). По полученным данным на графике наносят точки для каждого интервала геологического времени. Кривая, соединяющая эти точки, будет палеогеографической кривой.

    Содержание дисциплины

    Определение групп отложений горных пород

    Закрепление материала
    Тестирование материала
    Содержание дисциплины

    Геологические складки, виды складок